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1. Introduction.

With the recognition that the proton-proton chain reaction 
may provide the greater part of the energy production of 
dwarf stars1) a type of stellar model, which has not so far been 

studied in any great detail, becomes of interest. Indeed, since 
the temperature enters into the rate of tbe proton-proton reaction 
only with a power of about four, the energy production will take 
place in an extended region around the center of the star. Conse
quently, the existence of the convective core, which is a pro
nounced feature of point-source models and carbon-cycle models, 
is by no means certain. And even in cases where the convective 
core exists an appreciable fraction of the energy is likely to be 
produced outside the core, and it is necessary to take the varia
tion of the flux of energy through the star into account.

Previous investigations, which are important in this connexion, 
include papers by 1. Epstein2), and by I. Epstein and L. Motz3). 
These papers give models for the Sun, in which the proton-proton 
reaction is taken into account. A paper by Osterbrock4) gives 
models for red dwarf stars, calculated on the assumption that 
convective layers, extending downwards from the surface, exist. 
A. Reiz5) has calculated a model which is applicable to stars 
composed entirely of hydrogen and helium. It is a special case 
of the type of model considered in the present paper.

The aim of the present investigation is to answer the question: 
Given an energy production law of the form

e = £0o T4 (1)

how do the properties of the star vary with the opacity law?
In answering this question the methods for integrating the 

ecpiations of the equilibrium of the star will first be discussed 
(section 2). Section 3 gives the main results of using the punched 

1*  
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card equipment of the IBM Watson Scientific Computing Labo
ratory, New York City, for solving the differential equations. 
Altogether twenty different opacity laws have been considered. 
Detailed tables are given for eleven models. Finally, in section 4, 
the models are used to construct the Hertzsprung-Russell diagram 
for stars composed entirely of hydrogen and helium. It will be 
found that the results confirm those obtained independentlv bv 
Reiz5>.

In appendix 1 the power expansions for the behaviour of the 
solutions near the center of the star are developed, while appendix 2 
gives tables for the eleven models discussed in section 3.

2. A method for the integration of the equations 
of stellar equilibrium.

2.1. The fundamental equations. The stellar models to be 
considered in the present paper are specified in the following 
way: 1) The chemical composition is uniform throughout the 
star. 2) The star is in radiative equilibrium except for a possible 
convective core around the center. Convective zones near the 
surface are not considered. 3) The radiation pressure can be 
neglected. 4) The energy production is given by a law of the form

£ = £o Qô Tv (2)

where £ is the production of subatomic energy per gram per 
second, q the density, T the temperature, and £o, ô, and v, 
constants. 5) The opacity is given by a law of the form

(3)

where x is the mass opacity of the stellar material and xo, a, and 
s, are constants. 6) The stellar material behaves like an ideal gas.

The fundamental equations governing the structure of a star 
of these properties are well known. In the present section they 
shall be discussed with special attention to the fact that the 
energy production takes place in an extended region around 
the center of the star. Also, a set of variables, which is particularly 
suited for solution by means of automatic computing machines, 
shall be introduced.
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The starting point is the four standard equations of a star in 
equilibrium :6)

dP/dr GM r (> r 2

dMr/dr — 4 g r2

dLr/dr = 4 r2 £

dT/dr

(4)

(5)

(6)

rad. eq. (7 a) 

conv. eq. (7 b)

Here r denotes the distance from the center of the star, P the 
pressure, Mr the mass contained within the sphere of radius r, 
concentric with the star, Lr the flux of energy across this sphere, 
G the constant of gravitation, a the Stefan-Boltzmann constant, 
and c the velocity of light.

The physical contents of these equations can be stated as 
follows. The first equation is the condition that the star is in 
mechanical equilibrium in its own gravitational field, i. e. that 
the gravitational attraction on any element of matter will be 
compensated by the pressure gradient. Equation (7) is the 
equation governing the transport of energy from the center to
wards the surface. Il assumes one of two forms, depending on 
whether the main agent of transport of energy is electro-magnetic 
radiation or convective currents, or, in other words, whether the 
point in question is in radiative or convective equilibrium. In 
radiative equilibrium the gradient of the radiation pressure, 
aT4l‘3, becomes proportional to the flux of energy, Lrr~2, and 
the opacity per unit volume, xq. Where convective currents arc 
present the matter will be in adiabatic equilibrium, with the ratio 
of the specific heats equal to 5/3, valid for monatomic gases, and 
the temperature gradient is independent of the flux of energy. 
Equations (5) and (6) express the relation between the micro
scopic quantities, q and qe, and the macroscopic quantities, 
Mr and Lr- To these equations we must add the equation of 
stale of the stellar material, in our case of a perfect gas,

P = /z-i Q T (8)

where /t is the mean molecular weight, and <11 is the gas constant.
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The quantities z and e describe the physical behaviour of 
the stellar material, z measuring the interaction of the radiation 
and the matter, e giving the output of subatomic energy. Thus 
it is clear that they will depend on the physical parameters of the 
matter and the chemical composition, i. e. we can write

x = z(7j, 7’, chemical composition) 
£ = e((), T, chemical composition).

The problem of computing the structure of a star with a given 
radius /?, mass M, and total energy output L, is now equivalent 
to finding a solution of the eq. (4) to (8) which satisfies the 
boundary conditions

for r = P

The surface temperature can be put equal to zero without any 
appreciable error being introduced. The problem is thus one of 
four simultaneous differential equations with two point boundary 
conditions the fundamental problem of all such work as the 
present.

In order to illustrate the character of the problem we will 
now briefly discuss two different, though mathematically equiva
lent, methods for solving the problem by means of stepwise 
numerical integrations, namely a) by integrating from the surface 
and b) by integrating from the center of the star.

a) Suppose /?, M, and L, to be given. If we then assume a 
chemical composition we can, by stepwise integration, calculate 
the run of the quantities P, T, Lr, and Mr, as functions of r, 
going from the surface towards the center. In general we will 
find, however, that the two conditions Lr = d/r = 6 for r = 0 
are not satisfied. In order to get the proper solution we must, 
therefore, carry out a number of integration runs, varying system
atically two chemical parameters.

b) In order to start a numerical calculation from the center
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we must assume given the chemical composition and the central 
values of the density and the temperature, qc, and Tc. As the 
condition that our model is physically possible we have the one 
condition that q and T must vanish for the same value of r. Such 
a model can be found by carrying out integrations for systematic
ally varied qc, say. Thus, for given composition and 7’c we will, 
in general, determine one definite star with certain values of R, 
L, and M. By also varying Tc we can lind solutions with prefixed 
values of, for instance, M. In this way we have arrived at the 
celebrated theorem of Vogt and Bissell: Given the chemical 
composition and the mass of the star, the radius and luminosity 
follow. Finally we arrive at lhe same conclusion as when dis
cussing a), that in order to lit the solutions to given values of R 
and L, as well as M, we must vary tivo chemical parameters.

Although the conclusions of the two discussions a) and b) are 
equivalent, the two procedures are still quite different, in that 
a) requires two parameters to be varied in order to find the 
solution with given R, L, and M, while in b) four parameters 
must be varied in order to obtain the same result. This is the 
reason why calculations of the structure and composition of given 
definite stars, as for instance Epstein’s work on solar models, 
is carried out in the manner described as a). Even then a con
siderable amount of work is required before the eigensolution is 
found, and it is highly desirable to reduce the number of para
meters to be varied to one, when a more extensive program of 
calculations of stellar models is undertaken, even at the cost of 
some accuracy. This is accomplished by the application of 
homology transformations.

2.2. Homology transformations. We speak of two stellar models 
being homologous when values of the physical variables describing 
one of them can be obtained by multiplying the corresponding 
values for the other model by definite scale factors. Denoting by 
7’o, Rro, Qo, 3/ro, the variables al the point ro in one model, we 
get for the point r = ri in the homologous model

7T = Crro
7’i = C t To 
Lri — ClLto 
01 = C^o 
d/rl = CmMT0 

(10
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The existence of models described by quantities with suffix 1 is 
established only if these variables satisfy the equations (4) to (8). 
In the case of the equations (4), (5), and (8), this is apparently 
so, provided the scale factors satisfy suitable conditions. Equa
tions (6) and (7), which contain the, as yet, unspecified functions 
x and £, must, however, be considered in some detail. First we 
have, by assumption,

dTo/dro = — 3 (16 7t uc)"1 x0 (po 7’0) QoLro /Ç2 Tq3 (12) 

The condition that the configuration (11) does, in fact, satisfy 
eq. (7 a) is

<n\/dri = — 3 (16 n uc)_1 xi (pi 7)) piCrirf 2 7’f3 (13)

or, using (11),
CrCr-1 dTo/dro = 1

(14)
- 3 (16 % ac)~l CqClC^2C^,3 xi (pi 74) poTro/Ç2 T0~3. |

Comparing (12) and (14) we find that two models are homologous 
if their laws of opacity satisfy the functional equation

xo(t>o7o) = C0CLCr1CT4xi(poC0, 7’oCy) (15)

This will always be the case if the opacity can be written on the 
form

x = xop1_a 7,_3_s (16)

where a and s denote constants, while xo is a quantity which 
varies from one model of the homologous family to the next. 
In quite a similar manner we deduce from eq. (6) that in order 
to make the homologous transformation valid we must have 

e = fiopV. (17)

An application of this result will introduce an important 
simplification in the problem if the opacity and energy production 
can be written as (16) and (17), where the chemical composition 
enters only through the factors xo and £o. In that case the change 
of the chemical composition will only cause the model to vary 
within the same homologous family of solutions. Consequently, 
once a single member of the family has been found, it will be a 
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simple matter to discuss the relation between the chemical com
position and the parameters of the stellar model, R, M, and L.

We shall now proceed on the assumption of the validity of 
the expressions (16) and (17), postponing the discussion of their 
physical applicability. Then I he problem is solved as soon as 
one solution with the proper boundary conditions is known. 
Adopting the method b) we can now chose arbitrary values for 
xo, £o, and Tc. By varying oc we find the solution which satisfies 
the condition q = 0 and 7’ = 0 simultaneously for some value 
of r, R. This will give us a stellar model with definite values of 
R, L, M, Tc, Qc, xo, £o, and ju. Of these quantities xo, £o, and //, 
are assumed to be functions of the chemical composition. If the 
structure for some other values of R, L, and M, is wanted we 
only have to use scale factors. Of the three conditions to be 
satisfied, one determines the central temperature. The others 
impose two conditions on the chemical parameters. One of these 
is Eddington’s mass-luminosity relation, the other one is the 
condition that the total energy released by nuclear processes 
equals the luminosity.

It should be mentioned that a simplification of the integration 
procedure does not appear in the approach described in a), 
and it is quite obvious that the method b) should be used.

2.3. Homology invariant variables. The method for finding 
the eigensolutions of the fundamental equations outlined above 
could probably be used for the actual numerical procedure. 
Additional simplifications may, however, be introduced by using 
different variables, with the further important advantage that the 
equations become far belter suited for solution with the aid of 
automatic computing machinery. Indeed, as will be demonstrated 
presently, it will be a great advantage to use as variables the 
homology invariant quantities

V = — d log P/d log r = r_1P“1 (18)

U = d log MrId log r — 4 n q (19)

W = d log Lrld log r = 4 tc £0 r3 e1+(5 Tv I^1 (20)

H = V/(n + 1) = — d log T/d log r 1
= 3 xo (16 tc ac) 1 Q2 a Lrr 1 T-7 ® / (21)
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Of these variables V and lT are well known, H is closely 
related to the equally well known polytropic index, n, while W
has been introduced by Osi EHBKOCK and the present author7).
As can readily be show n, the boundary conditions for these
variables are

f = W = 3, V = ff = () for r = 0 (22)

u = w == o, dc, H DC for B — r. (23)

The differential equations satisfied by these variables are deduced 
by logarithmic differentiation of the eq. (18) to (21), making use 
of eq. (4) to (8) and also of the equations themselves. We get

dV/V = (L7 + H—1) dr/r (24)

dU/U = (3 — V + H - U) dr/r (25)

dW/W = (3 — (1 + ô) V — (v — 1 — ô) H — W) dr/r (26)

dH/H — ((9 + ,s — a) H — (2 — a) V + W — 1 ) dr/r. (27)

It is now apparent that we can eliminate the last physical 
variable, r, simply by choosing the independent variable among 
the four homology invariants. The most convenient variable for 
this purpose appears to be F*  and we are then left with the 
equations

dU/dV = U (3 — V + H — F) V-1 (F + H l)1 (28)

dW/dU = W(3 —(1 + <5) V I
(29) 

-(v—l—ô)H - W) V’1 (F + H—I)"1 I

dHIdV = H ((9 + ,s — a) H I
(36)

- (2 — a) V + W—1) V“1 (F + H — I)-1, f

The great advantages of using the variables V, U, H, and W, 
now become apparent. In fact, expressed in these variables, the 
four fundamental differential equations are reduced to three 
differential equations and a quadrature. For, in order to return 
to the physical variables from a solution expressed in the homology 
invariant variables, we only have to perform a quadrature, e. g.

* A similar method has been used by Levee8), who choses W as his in
dependent variable.
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log r/r0 = r l (U + H—I)“1 dV (31)

and then use the equations (18) to (21). Also, the differential 
equations are very convenient lor treatment by means of auto
matic computing machinery, because they do not involve expo
nentials.

Having now demonstrated the advantage of using the vari
ables (18) to (21) we only have to understand their behaviour 
al the boundaries before we can use them for actual computa
tions. We have already given the boundary conditions for all 
our variables at the center and the surface of the star, eq. (22) 
and (23). Integrating, as we intend to do, from the center towards 
the surface, the new independent variable, V, varies from zero 
to infinity. In practise one must, of course, break off at some 
suitably large value of V. As to the conditions at the center we 
find, by inserting the values of the variables at the center in the 
eq. (28) to (30), that V = 0 is a singularity, so that a parameter 
is necessary to label a solution starling at the center. This is not 
surprising, when compared with the procedure for solving the 
problem in physical variables discussed above. It is quite clear 
that, also when using the new variables, it will be necessary to 
carry out trial computations, varying one parameter, before the 
solution satisfying the boundary conditions both at the center 
and at the surface is found. As the parameter labeling the trial 
solutions it has been found convenient to use

Ho = (dH/dV) v = o = (nc + 1 ) 1 (32)

where nc denotes the polytropic index at the center of the star. 
The numerical solution cannot be started from the center where 
all derivates become indeterminate. We have, therefore, ex
panded H, lr, and IV, in powers of V, the coefficients of the 
series being functions of Hq . The evaluation of the power series 
is elementary, but rather lengthy, and has been given in ap
pendix 1.

Suppose now that a value of Hq is chosen. Using the ex
pansions of appendix 1 we can then compute H, IV, and U, for 
a value of V close to zero, e. g. V = 0.2. From here we can con
tinue the solution of the equations (28) to (30) to some large value 
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of V (V = 15 is convenient) by step-by-step numerical inte
gration. The question is now, what is the criterion that Ho is 
chosen in such a way that the solution corresponds to a con
figuration in which 1) and T simultaneously lend to zero? In 
order to find Ibis condition we observe that near the surface of 
the star we must have an approximate relation of the kind

Poe Ta (33)

where 7 is some positive number which is left undetermined for 
the moment. But from this relation it follows that near the surface 
we have

n + 1 = V/H = d (log P)/d (log T) = 7 (34)

i. e. near the surface the polytropic index must tend to a finite 
positive limit. The actual value of this can now easily be found 
from the eq. (30). Near the surface we can neglect the constants 
and the functions U and W in comparison with H and V, which 
increase beyond any limits. Writing no for the value of n at 
the surface, we have then

H = V/(n0 + 1 ) (35)
and we find

no + 1 = (8 + s — a)/(2 — a). (36)

The required criterion is that the quantity V/H lends to this 
limit for large V.

It is of considerable interest to know what happens if lhe 
parameter H() is not chosen to be equal to the eigenvalue. The 
numerical work shows that lhe solutions are extremely sensitive 
to variations of this parameter. In fact, if //0 is chosen only 
slightly below the eigenvalue, H will reach a maximum and lhe 
denominator U -T H — 1 will become zero for some finite value 
of V. If, on the other hand, Ho is chosen larger than the eigen
value, H will increase so as to make n + 1 — V/H< 2.5 at 
some value of V. At this point the equation of radiative equi
librium will cease to be valid. Only if Ho is chosen quite close to 
the eigenvalue will the solution ever reach V — 15. Generally, 
the sensitivity of the solutions can be understood from the presence 
of the rather large coefficient 9 + s — a in eq. (30). In the eigen- 
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solution the quantity (9 + s — a) H — 1 + W — (2 — a) V will 
remain small only because the first and the last term nearly 
cancel. Any deviation from this solution will quickly be amplified, 
when the solution is followed towards larger V.

Once the eigensolution, expressed in homology invariant 
variables, have been found, there remains the problem of cal
culating the solutions expressed in physical variables. This 
calculation necessitates one further integration, e. g. the quadrature 
(31). The variables Mr, Lr, P, and T, could then be found by 
means of the eq. (18) to (21). The automatic computing machinery 
being available it was, however, more convenient to evaluate all 
of the physical variables bv means of quadratures. From the eq. 
(18) to (21) and (24) to (27) we find

(37)

log P - \ dV/ÇU T H —- 1) + constant
Jr»

log T - \ HdV/V (F + H — 1) + constant
»JVo

log Mr = \ UdV/V(U + H — 1) + constant
Jf.
,.y

log Lr = \ WdV/VfJJ + H — 1) + constant
♦Jf0

The constants of integration were chosen so that the functions 
log r/R, log P/Pc, log T/Tc, log Mr/M, and log Lr/L, resulted. 
For log r and log Mr this made an analytic approximation of the 
solutions beyond V = 15 necessary. This was derived in the 
following manner.

2.4. Expansions valid near the surface of the star. Let us, 
following C. M. and H. Bondi9), introduce the three homology 
invariant variables

Q = — d log r/d log P = V-1 (38)

s = - (/log Mr/(/log P = U/V (39)

X (/log T/(/log P = (n + I)“1 = H/V. (40)
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These variables are convenient near the surface where V and 
H tend to infinity. Using eq. (18) to (21) and remembering that 
Lr = L near the surface we now get

dQ/Q = dr/r — dMr/Mr + dT/ T = (—() + 8 + A7) dP/P (41)

d8/8 = 4 dr/r — 2 dMr/Mr + dP/P = (1 — 4 () + 2 S) dP/P (42) 

dN/N = (2 — a) dP/P — (8 + s — a) dT/T — dMr/Mr I
= [(2-a)-(8 + s —a)N + S] dP/P. j

Owing to its close relation to V we shall find it convenient to use 
() as the independent variable, rather than 8 as used by Bondi 
and Bondi. We then get the differential equations

d8/dQ = 8(1—4() + 2 8)()-1(8 + A< —(?)-i (44)

dN/dQ = A+(2 — a) — (8 + s—a) N +8) ()-1 (8 + AT—())-1. (45) 

We intend to use these only for V>15, i. e. for ()< Q<1/15.
Also, 8 is small near the surface, and thus we have approximately

dS/dQ = SQ-1 A',,1 (46)
whence

S = A-i()1/x“ (47)

where A is a constant. This approximation is belter than might 
at first be expected. This is due to the fact that N, in the applica
tions, usually is close to 1/4, so that N (1 —1 () + 2 8) (8 + N— Q)1 
remains close to unity even for rather large values of ().

The variable ;V will be nearly constant equal to

A'o = (1 + n0) 1 = (2 — a)/(8 + s — a) (48)

near the surface. A better approximation can be found if eq. 
(45) is analysed with respect to the importance of the various 
terms. It becomes apparent that for small variations of N it 
makes sense to regard N/(N + 8 — ()) as a constant at the same 
time as the variation of (2 — a) — (8 + .$ — a) Ar + 8 is taken 
into account. In fact, this latter quantity can be written

— (8 + s — a) (A — Ao) + 8.
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At the surface we have S = 0, and near the surface the two 
terms are comparable. This suggests that it would be a good 
approximation to write

A" — AT = BS (49)

where B is a suitable constant. For its determination we get from 
(45)

BdS/dQ = AT (AT + S — QrW-1 (1 — (8 + s — a) B) 

or, using (46),

B = AT (3 — a — 77 (n0 + 1) Q)_1. (50)

Strictly, S and Q are zero where the approximations are valid. 
The form given, eq. (50), suggests that slightly better results 
would be obtained for finite values of () if a coefficient B, which 
is slowly increasing with Q, is used, r/ being a factor less than, 
but of the order of, unity.

We now get from eq. (38) and (41), corresponding to (31),

log r/B = -\(AT + S-Q)-T/(). (51)
•Jo

Beginning with the most important, the order of magnitude of 
the quantities is, AT, Q, N, and Ar—AT. We can therefore expand 
the integrand

ÇV + S_Q)-1 = (AT-Q)-i-(l +B)(AT-Q)-2S. . . (52) 

where we have used (49). The first term can be integrated 
exactly. In the second term we use the first two terms of the 
expansion for (AT — Q)-2. In this way we get

logior/B = logio(l — (MT T)

To +
no + 2 \

2 (n0 + 1) (no+ 2) \ 
no+ 3 J

SQ log e (1 + B)
(53)

where we have used eq. (48).
The approximation for log Mr/M is derived in the following 

way. Using eq. (39) and (41) we find
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log Mr/M = - \ SQ 1 (Ar — () + S)-1 <ZQ (54)
♦ o

Inserting the expansion (52) \ve tind that none of the terms can 
be integrated exactly, and we have to expand (2Vo — ())_1 and 
(A'o — Q)~2 in power series in QN^1. Using (47) we can integrate 
term by term, and gel, after some reduction,

As an illustration of the use of these relations we take the 
following values which have been obtained from one of the 
integrations described in section 3. 'Flic constants of the model are

We then find from (36)

a = 0.5
s = — 2.1.

n0 + 1 = A'o 1 = 3.6.

The integration from the center gives for V— 15:

U = 0.2162.

Then, from (38) and (39),

S = 0.0144
() = 0.0667.

From (50) we lind
B = 0.12,

and from (53) and (55)

logior//? = 9.8826 — 10 
logio;Wr/M = 9.9926 — 10.

Fhe expansions are equally useful for starting integrations 
from the surface. In this case each solution will be specified by 
the value of the parameter .4 (eq. (47)). Choosing a starting value 
for V the expansions will provide values of Ar, r//?, and Mr/M.
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(56)

the central temperature constant,

(57)

the constant in the mass-luminosity relation,

7 + s

(58)

1) = £CM/L. (59)

F = (60) 

E = (61)

C = (62) 

I) = (63)

2

which, expressing L, R, and M, in solar units, becomes

and the ratio of central energy production rate to mean energy 
production rate,

Using the eq. (18) to (21) it can be shown that these parameters 
satisfy the relations

It should be noted that the quantities on the right hand side 
are independent of the point in the star which is used in their 
determination. This constancy can serve as a check on the last 
stage of the calculation of the solutions.

Dan. Mat. Fys.Medd. 30, no.16.

2.5. Invariant parameters of the models. In addition to the 
functions (37), the invariant parameters, which specify the 
models, must be found. Corresponding to the homology trans
formations each model can be characterized by four parameters. 
In an obvious extension of the convention adopted by Chandra
sekhar10) we choose the parameters to be the following:

The ratio of central density to mean density,

F = QcIq,

3
4 (4 tt)3_a ac

LR?X + 8 zo
log C = — 27.0448 + 0.3274 a —7.3638 s + log--------- -------- ,

°M5 + s+a//7 + s
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2.6. Convective cores. Up to this point the question of con
vective cores has been ignored. It is, however, very easy to extend 
the already developed procedure for integrating the equations of 
equilibrium of a star to the case of a star with a convective core. 
As is well known, the structure of a convective core is described by

T=Tc0(£) (64)

2 = (?c 0 (£)3/2 (65)

where 0 is the Emden function for the polytropic index n = 3/2, 
and £ is proportional to r. The function 0, together with V and 
C expressed as functions of £, have been tabulated11). Further
more we have

11 = V/ (n + 1) = 2 V/5. (66)

Suppose now that the core extends lo a value of V = VCOre- 
Outside this point eq. (30) replaces (66). Al Vcore all our vari
ables, including V, U, 11, and IV, must be continuous, and we 
can lind the proper starting point for the numerical integrations 
from their values on the boundary of the core. Of these V and U 
are known from the tables quoted above, and H is found from 
eq. (66). The variable IV, finally, can be found for any point 
in the core, using (20), (6), (17), (64), and (65), which give

IV = pgv+3

I bis quantity is a function of £ and v + 3 <5/2 only and has been 
tabulated by the present author12).

Having thus determined V, U, IV, and H, on the boundary 
of the core we can carry out the stepwise integration of eq. (28) 
to (30) to see whether the condition (36) is satisfied for large V. 
If not, it is a sign that the core has not been assigned the right 
extent.

2.7. Summary of the method. As a summary of the present 
section, here is a short directory in the use of the method :

(liven the four exponents, a, s, d, and v, lind the series expan
sions valid near the center, using the formulae of appendix 1. 
It is most convenient to choose a suitable small value of V, e.g. 
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0.2, and then, by using the Taylor series, to find U, IV, and H, 
as polynomials in Ho. (If it is known already from other evidence 
that the model possesses a convective core, this calculation and 
the following one can, of course, be omitted.)

In order to determine whether a convective core is present 
or not, compute a triai solution, starting with nc = 3/2, i.e. 
Hq — 0.4, and using (28) to (30) for a step-by-step integration. 
If H or U -f- H — 1 become zero, a convective core is actually 
present. If, on the other hand, // increases so rapidly as to make 
n + 1 = V/H smaller than 2.5 at some point no convective core 
is present.

Priai solutions corresponding to varying initial conditions 
must now be calculated until a solution is found for which the 
polytropic index n + 1 = V/H approaches the proper surface 
value (36) for large values of V. The parameter to be varied is 
/70 in the cases of no convective core, and VCOre when a core is 
present. In the latter case the initial values are taken from the 
tables of the Emden functions, as described in section 2.6.

The run of the physical variables can now be found, r following 
from (31), and the other variables from eliminations among the 
eq. (18) to (21 ), or from the quadratures (37). If the five physical 
variables are expressed in units of /?, Pc, Tc, M, and L, the series 
expansions (53) and (55) will be useful.

With the complete solution thus computed the constants of 
the model follow from (60) to (63).

3. Numerical results.

3.1. The use of the punched card equipment. In the preceding 
section it has been shown that the calculation of the structure 
of a star with the opacity given by z = xo ol a T~3s and the 
energy production given by e = eq co Tv can be reduced to the 
stepwise integration of the eq. (28) to (30). In this section we shall 
describe how the calculations for the case e = eo q T3 4 have been 
carried out by means of the IBM punched card equipment at 
the Watson Laboratory, New York City, and the results obtained 
will be given.

Before any numerical calculations can be made, the differ
ential equations must be approximated so as to permit a solution

9*
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in a finite number of algebraic operations, which is, essentially, 
a problem of replacing the integrals by suitable summations. For 
this purpose a process of successive approximations was used. 
In the first approximation the solution was computed by repeated 
expansions, using only the first term of the Taylor series, according 
to the formulae

/ m+1 — Um A d V (dL fd\ )m 

IV m+1 — VI m d V (</VI I(I\ )m 

Hm+1 = Hm + d V (dH/dV)w

(68)

where d V stands for the constant steplength of the independent 
variable, and we have used the subscript m to denote the value 
of the variables al the point Vm = Vo + nt d V. Thus, in the 
first approximation, we get tables of the three variables U, VV, 
and H, which, however, do not exactly satisfy the differential 
equations. These tables can then be used to calculate good ap
proximations for second order terms in the expansions, e.g.

x/2 (d V)2 (J2 U/dV^)m Um+i - 2 Um + Grø-i (69)

and a second order run can then be computed using

Um+1 = um + d V(dUldV)m + V2 (d V)2 (d2/7/</V2)m (70) 

and similarly for IT and H.
The efficiency of this method depends strongly on the step

length, d V, which must be chosen small in order to make the 
process converge rapidly. A value of d T of 0.1 was found 
suitable when four decimal places were carried. In fact, no 
higher approximations than the second were needed.

In the course of the calculations extensive use was made of 
the excellent collection of computing machines at the IBM Watson 
Laboratory. However, the only particular technique worth men
tioning in the present connexion is the one used for solving the 
eq. (28) to (30) by means of the model 604 electronic calculating 
punch. This machine has a rather small capacity for numbers, 
a total of only 50 digits. It was found possible to solve the differ
ential equations only by using two punched cards to advance the 
variables by one step. In this way numbers may be stored pro
visionally on a card while it passes from the punch station to the 
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second reading station. Use of this technique, and of the selective 
circuits of the machine, made it possible to fit the variables into 
the capacity of the machine. The speed of the process was 50 
integration steps per minute. During the search for the eigen- 
solutions several hundred integration runs were performed.

The other problem of the numerical solution of the equations 
is the sensitivity of the solutions against variations in the initial 
values. Owing to this sensitivity any deviation of the trial value 
of Hq from the eigenvalue will cause the solution to end at a 
physically impossible point, either n = oo or n = 0. The sensi
tivity is so strong that a solution which is started from the point 
V = 0.2 and calculated with four decimal places will rarely go 
beyond V = 6 before an impossible point is reached. Thus one 
can have two starting values of at V = 0.2, differing by one 
unit in the fourth decimal, one of which will cause n to vanish 
at V = 6, while the other will send n off to infinity before V = 6. 
One way of overcoming this difficulty would be to carry more 
decimals. This was, however, not possible with the 604. Another 
method is suggested by the following table, which shows some 
results of two runs:

H’o = 0.3605 Ho = 0.3610
V U W H U W H

0.2 2.9232 2.6846 0.0708 2.9233 2.6844 0.0709
3.0 1.8551 0.3200 0.8340 1.8662 0.3213 0.8682
5.4 oc
5.8 0.0000

It is apparent that the two solutions, which differ widely at 
V = 5.5 are still close together at V = 3. It therefore suggests 
itself to start further runs from V= 3, interpolating the initial 
values between the two solutions:

V = 3

U = 1.8551 + 0.01 1 1

IU = 0.3200 + 0.0013

H = 0.8340 + 0.0342

where y is a parameter to be determined by further integrations. 
This method proved to be quite satisfactory, but had to be used
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Fig. 1.

O. 75

several times for increasing valnes of V, usually at V equal to 
3, 6, and 10. Only the solutions started at V = 10 could be 
followed as far as U= 15. The result of this procedure was a 
pair of solutions lying closely on either side of the eigensolution 
for each of the intervals in V between 0, 3, 6, and 10. The finally 
adopted solution was found by linear interpolation between these 
pairs, use being made of the interpolation factors y as defined 
above. As a check, the final solution was compared with the 
differential equations. Usually the error in the increase of the 
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solution for one step was found to be within one unit in the 
fourth decimal, and only in a single case a deviation of as much 
as four units was encountered. This fully justifies the procedure. 
It is interesting to note that if all runs had been calculated all 
the way from V = 0.2, at least ten decimals would have been 
necessary in the calculations.

3.2. The behaviour of the convective core. During the initial 
stages of the work twenty different opacity laws were considered, 
viz. all combinations of a = 0.0, 0.25, 0.5, 0.75, and 1.00, and 
.s = +0.5,—0.5, — 2.1, and —3.0. In this way the two important 
cases of constant opacity (a = 1, s = —3.0) and Kramers opacity 
(a = 0, .s = +0.5) and a number of intermediate cases were 
covered. At the later stages only eleven of the cases were investi
gated. However, the material gives information concerning the 
extent of the convective core for all of the twenty models. This 
information is represented in figure 1. This diagram also shows 
the results of applying the criterion for the existence of a convective 
core to the model in question7), 12>. It is apparent that this criterion 
alone is sufficient for a reasonably good first indication as to 
whether a core may be expected or not.

3.3. Invariant parameters of eleven models, 'fable 1 gives the 
invariant parameters of the eleven models which have been con
sidered in detail, calculated according to eq. (60) to (63). For 
/?, M, and L, solar units have been used.

The principal results of an inspection of this table are the 
following :

a) For given R, M, and p, Tc increases for increasing a and s. 
Speaking in terms of figure 1, Tc increases towards the upper 
right of the diagram. For models along the line connecting Kramers 
and constant opacity the central temperature is nearly constant, 
decreasing slightly towards the latter.

b) Qualitatively, the ratio qcIq varies in the same way as the 
central temperature. However, the drop of the density concentra
tion towards the constant opacity end of the diagram is more 
pronounced than is the drop of central temperature.

c) The ratio ec M/L is nearly constant, independent of the 
opacity law.
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Table 1.
e = £o?T4 x = xoe1-a 3~s

Model
no. a

log RTc!(iM
- log E

log
= log F log C + 10

log ec M/L
= log D

1 0.00 -}- 0.5 7.317 1.642 4.076 0.942
2 0.25 + 0.5 7.416 2.005 4.567 0.951
3 0.50 + 0.5 7.604 2.658 5.385 0.964
4 0.25 — 0.5 7.295 1.529 4.761 0.942
5 0.50 — 0.5 7.397 1.913 5.206 0.951
6 0.75 0.5 7.615 2.664 6.002 0.965
7 0.50 2.1 7.204 1.153 5.761 0.925
8 0.75 2.1 7.280 1.431 6.022 0.942
9 1.00 — 2.1 7.434 1.982 6.465 0.963

10 0.75 — 3.0 7.174 1.040 6.508 0.915
11 1.00 -3.0 7.253 1.316 6.716 0.933

3.4. The structure of the models. In appendix 2 the variation 
of the physical parameters through the eleven models is given. 
In the calculations four decimals were carried throughout. The 
figures given have been rounded to three decimals.

The figures termed variations give variations of the funda
mental variables U, IT, and H, for variations of the initial values. 
They correspond to the coefficients of y as used in eq. (71). 
The corresponding variations of the initial values could not be 
determined with any accuracy.

4. Applications of the models.

4.1. The Sun. The integrations described in section 3 have 
been used for the construction of two different models for the Sun. 
During this work the integrations were only used to describe the 
central parts of the Sun, use being made of the variations explained 
in section 3.4, while the exterior regions were convered to a large 
extent by the series expansions of section 2.4. It was found possible 
to fit the model to a physically given opacity, which contained 
contributions from the heavy elements, free-free transitions in 
hydrogen and helium, and scattering on free electrons. Details 
of these models have been published elsewhere13).
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4.2. The hydrogen-helium star. The most natural application 
of the models is the construction of the Hertzsprung-Russell 
diagram for stars composed entirely of hydrogen and helium, 
since the models are based on an energy production law of the 
type (1). Indeed, the energy production by the proton-proton 
reaction is given by14>

e = 10-29.0054 X2 Q TX

Here X is the abundance of hydrogen, by mass. However, in 
such a star the opacity will be due to scattering on free electron 
and free-free transitions in hydrogen and helium, and cannot 
directly be expressed in the form (16). The principal question 
is thus how to apply our models to stars in which these two agents 
both contribute to the opacity. In this question we choose the 
following approach.

According to the theorem of Vogt and Russell the structure 
of a star is uniquely determined by the mass and the chemical 
composition. In a mixture of hydrogen and helium there is only 
one chemical parameter. Consequently our stars form a two- 
parametrical sequence, the parameters being the mass, M, and 
the hydrogen abundance, X. Consider now the two contributions 
to the opacity. In general it will, of course, be necessary to take 
both of them into account. It seems likely, however, that in a 
certain region of the (3/, X)-diagram the electron scattering will 
be negligible. The behaviour of our stars in this region will then 
be given by the model based on an opacity law of the form

x = 2.74 • 1022 (1 + X) g (72)

where the constant is the one used in the construction of the 
solar models13).

Correspondingly, we expect to find, in another region of the 
(Af, X)-diagram, that the free-free transitions can be neglected 
in the opacity. In this region we can then use the model based on

x = 0.2 (1 + X). (73)

In the remaining part of the (47, X)-diagram we must take 
both the free-free transitions and the scattering into account. 
Here we may hope that one or more of the models, based on 
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opacity laws intermediate between the two already quoted will 
be of use. As explained below this is indeed the case.

Model 1.
Free-free transitions predominate.

Our first task, when using this model, is to determine the 
region in the (M, A)-diagram in which the scattering is negligible. 
We therefore first investigate how the opacity varies through 
this model, using the table of appendix 2,

V r/R log (qIqc) (T/Tc)-3-5
0 0.00 0.00
6 0.41 0.45

15 0.72 0.63

We see that the Kramers opacity factor increases outwards 
in the star. We therefore only have to know that the scattering is 
relatively unimportant at the center to conclude that it is so 
through the whole star. On the basis of the four invariant con
stants of the model and the homology transformations we can 
convert the condition that the ratio of scattering' opacity to free- 
free opacity has a definite value at the center into a relation 
between M and X. Indeed, using eq. (56) to (59) and demanding 
that the scattering opacity of eq. (73) is less than 10 °/0 of the 
free-free opacity of eq. (72) we get

log M <— 1.0597 + — log (1 + Ar) A"2/t-46. (74)
o --

Table 2 gives this function together with some more data for the 
corresponding stars.

Table 2.
Model 1. The sequence for which ^scatteringMfree-free = 0-1 at 

the center of the star.

X Max log M 1 log 7? log Tc log pc log L i/4 log LR -

1.00 9.38 9.85 6.55 0.85 6.49 9.20
0.75 9.27 9.75 6.60 1.03 6.51 9.25
0.50 9.13 9.63 6.67 1.26 6.53 9.32
0.25 8.94 9.45 6.78 1.61 6.53 9.41
0.10 8.80 9.26 6.91 2.03 6.50 9.49

The model does not possess a convective core.
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It is apparent that the present model is valid only for very 
red dwarfs.

Model 8.
Free-free opacity and scattering opacity compete.

We shall now try to tind a model which can be made to 
represent the case that the opacities from the two sources, eq. 
(72) and (73), are of the same order of magnitude. It is therefore 
necessary to adopt a method for combining the two contributions. 
In the present survey it was judged sufficiently accurate simply 
to add them together. We thus represent our physical opacity by 
the expression.

«physical = 2.74 • 1 ()22 (1 + X) Q T~9-5 + 0.3 (1 + X) (75)

where the customary factor of 3/2 has been applied to the scatter
ing. We now want to tind a model in which the opacity, given by 
(75), runs closely to a function of the form (16). For this purpose 
we proceed as follows: Using the tables of appendix 2 we can 
compute the run of the actual opacity through each of our models. 
We have, in fact,

(76)

Also, we can compute the run of the free-free opacity from

(77)

The condition that the particular model is useful in the present 
context then becomes that there exists a relation of the kind

(e/^)1-« (T/Tc)-3-« = x (qIqc) (T/Tc)-3-5 + y (78)

where x and y are positive.
This test was carried out for the nine models available with 

the result that it was found that in model 8 we have

(o/oc)°-25 (T/Tc)-°-9 = 6.110 (qIqc) (T/Tcy3-5 + 0.954 (79)

within an accuracy of 6°/0 throughout the star.
The two terms on the right hand side of (79) represent the 

contributions from the free-free transitions and the scattering. 
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At the center we thus have a contribution from the free-free 
transitions of 10°/0. At r/K = 0.73 they contribute by 44 °/0.

The present model places a strict condition on the value of 
the opacity at the center of the star. In fact, for the terms of eq. 
(75) and (79) to be proportional at the center we must have

0.3 • 0.110
0.954 • 2.74 • 1()22

— 1Q-23.90 (80)

Further, the constant of the opacity law becomes

«o = 0.3145 (1 + X).

The invariant constants of the model now give

32 log M = 16.666 + log (1 + X) co /z-49.

(81)

(82)

This gives a one-dimensional sequence of stars. It has been 
tabulated in Table 3.

Table 3.
Model 8. The sequence of stars in which the free-free transi

tions contribute 10% of the opacity at the center and 44 % at 
r/7? = 0.73.

— —-------------
X log M log R log Tc log oc log L Vi log LT?-2

1.00 0.08 9.86 7.20 1.31 0.26 0.13
0.75 9.9(5 9.76 7.25 1.48 0.24 0.18
0.50 9.81 9.64 7.31 1.70 0.22 0.23
0.25 9.62 9.46 7.41 2.05 0.17 0.31
0.10 9.46 9.27 7.53 2.46 0.09 0.39

The convective core extends in this model to r/77 = 0.16, includes 
10% of the mass and 51% of the energy production.

Model 9.
Electron scattering predominates.

This model was computed on the assumption that x is constant. 
The condition that it is useful in the present investigation is that 
the opacity due to the free-free transitions is small. We therefore 
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first consider the variation of the corresponding factor through 
the star:

V log (»/£>„) (T’/'/’c)-3'5
0 0.00
5 0.65

10 1.03

It is apparent that the importance of the free-free transitions 
increases as one moves outwards in the star, like in model 1 and 8. 
This increase continues even to the surface. Here we have, in 
fact, P dc 7’4 so

g T~35 oc y-o.5 (near the surface). (83) 

Since there exists no region where this model is strictly applicable 
we must contend ourselves with some reasonable condition for 
the unimportance of the free-free transitions. As such we adopt 
that they must contribute by 10 °/0 or more only at points exterior 
to V = 15, r/R = 0.74. Table 4 has been calculated on this 
assumption.

Table 4.
Model 11. In the sequence of stars given the free-free transi

tions contribute by 10 °/0 to the opacity at r/R = 0.74.

A' log M log P log Tc log (?c log L V4log 2 P !P1 r 1 c

1.00 0.60 9.98 7.58 1.37 2.35 0.60 0.035
0.75 0.48 9.88 7.63 1.53 2.33 0.64
0.50 0.33 9.76 7.69 1.76 2.31 0.70
0.25 0.14 9.58 7.79 2.10 2.26 0.78
0.10 9.98 9.39 7.91 2.51 2.18 0.85 0.056

The convective core in this model includes 24°/0 of the radius, 
22°/0 of the mass, and 78 °/0 of the energy production. Pr is the 
radiation pressure at the center.

The Hertzsprung-Russcll diagram.
The results quoted have been collected in the accompanying 

HR-diagram. Additional results, for stars with log M = 0.5, have 
been plotted. With this value of the mass the radiation pressure
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becomes appreciable, and the basis of the model breaks down. 
For comparison the points corresponding to the data for the Sun, 
Y Cygni and Krueger 60 A, have also been plotted (fig. 2).

The results of the present section may be compared with 
those obtained by A. Reiz5). Reiz has calculated a model of the 
type considered in the present paper, based on the opacity law

n — zo o0,5 T-1'75. (84)

It is found that the present results agree well with those found 
by Reiz.
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Finally, he wishes to thank Ole Romer Fondet, Copenhagen, 
and The International Astronomical Union for the grants, which 
made the stay at New York City possible, and the U. S. Edu
cational Foundation in Denmark for a Fulbright Travel Grant.

Appendix 1.

Expansions for the central region of the star.
In this appendix the series expansions valid at the center of 

the star will be derived. V will be taken as the independent 
variable throughout. Thus, dashes denote derivatives with respect 
to V, and subscript zero values of the functions at V = 0, i.e. 
at the center of the of the star, 'flic formulae will be derived such 
as to be equally useful for a star in convective and radiative 
equilibrium at the center. Expressions whose validity is confined 
to one of these cases will be distinguished by rud. eç. or coni), eq. 
written in the bracket together with its number.

It will, in this section, be convenient to introduce symbols 
for some particular functions. Thus we define

T = H/V

g = 9 + .s —■ a

S = (g H — (2 — a) V + W — 1)/(U + H — 1)

(85)

(86)

(87)
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P = L7(P+ H - 1) (88)

Q = (3 - V+ H - U)/V (89)

A = W/(U + H — 1) (90)

b = v — ô — 1 (91 )

B = (3 —(1 + <5) V—b/7—W)/V (92)

Then the differential equations (28) to (30) can be written

H' = ST (93 rad. eq.)

U' = PQ (94)

VV' = AH (95)

In convective equilibrium eq. (93 rad. eq.) is replaced by

Hq = Hq = Hq etc. = 0 (96 conv. eq.)

On the basis of these expressions we want to find the first 
and higher derivatives of U and W, and the second and higher 
derivatives of H, at V = 0, subject to the conditions

Uo = Wo =3 (97)

//o = 0 (98)

In all these derivatives H\} will enter as a parameter (cfr. section 
2.3).

First differentiation.
Using (98) we have the Taylor expansion

H = H'<> V + >/2 V2 +1H",' V3 . . . (99)
6

Then from (85)

T = H'„+ >/2 V2. . . (100)

TO = H'O. (101)

From (87) and (88) we get

So = 1 (102)

Po = 3/2. (103)
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At V=0, Q becomes indeterminate. We can find the limiting 
value by using the standard rule of differentiating the numerator 
and denominator sepcrately (this rule will be used frequently 
in what follows) and obtain

Qo = -l+Hi-U;. (104)

Further, using (94), we get

= -PoQo = — 2 O — o + o) (105)

and solving for Uo

=-| (1-«!,)• (106)

Then (104) becomes

Qo = -|(l-Hi). (107)
3

The following quantity will also be useful

U; + H; = (8Hj-3)/5. (108)

From (90) and (92) we now get

Ao = 3/2 (109)

B0 = -(l (110)

and from (95)

1V; = A„ B0 = -3(l +O/2-3hW;/2-3 w;/2. (Ill)

Solving for Wo:

W; = -3((l +0) + bH'0)l5 (112)

and inserting in (110)

Bo = 2 W'„I3 = -2 ((1 + <5) + hH'0)lä. (113)
Dan. Mat. Fys. Medd. 30, no.16. 3
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Second differentiation.
Differentiating (100) we gel

7 = 1/2 H 0 + 77 0 V/3 (114)

and

7 o = 1/2 770 . (US)

Further, from (87),

S' = (^77' —(2 — a) + 1V')/(U +77-1) |
- (9H-- (2 - «) V + IV-1 ) (£7' + H') (u+ H-1 )-2. ) ( 116)

Using (97), (108), and (112), we obtain

S'o = ((5 # — 3 b — 8) 77q — 10 + 5 a — 3 <5)/10. (117)

Now, from (93), (115), and (101)

77o — 7>o 70 + So To — 1/2 77O + 770S0 (118 rad. eq.)

and solving for Ho, using (117),

77q = H'o ((5 g — 3 b — 8) H'o— 10 + 5 a— 3 <5)/5 . (119 rad. eq.)

Differentiation of (88) yields

P' = p'/(U + // — 1) — U(U' + 77') (U+ 77— l)-2 (120) 

and inserting (100)

P' = 3(1 -6 H'OI'M. (121)

Differentiation of (89) gives

(/ = (—1 +77' —U')/V—(3—V + 77—U)/V2 = 1 
(122) 

(-1 + 77' —U'-Q)/V.

By the standard limiting ride we get

Qo = 77o — Lo — Qo
or

Qo = 1/a 77o — 1/2 ('0.

(123)

(124)
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Wc can now calculate

U» = PoQ'o + P,',(?,>

= 3 Hi'/4 - 3 4'0/4-3 (6 - 7 H/, + 1)/ 50
(125)

and, solving for Uq, obtain the results

LT0 = 3 Hq/1 — 6 (6 H'2 — 7 H' + 1)/175 

Q'„ = 2 H"/7 + 3 (6 H? - 7 H'„ + 1)/175.

(126)

(127)

Inserting (119) in (126) we get

U'o = 3 ((25 ^-15 5-52) H^2

+ (25 a — 15 ô — 36) Ho — 2)/l 75.
(128 rad. eq.)

By differentiation of (90) we get

A' = W'(LT + H—I)“1 —W(G' + H')(H+ B—l)-2 j 

= U7/(G+H—l)-1 —A(LT, + H,)(U+H—l)-1 J
(129)

and, using (108) and (112), the limit

a; = — 3 ((8 + 2 5) H'o + 2 Ô — l)/20. (130)

For B' we get, from (92),

B' = (_(i+5)-5H'-W')/V-(3-(l+5)V I
 bH  W)/V2 = (— (1 + 5) — bH' — W — B)/F / (131)

which gives the limit

B,', = - ‘/s 6H" - >/2 »’i’. (132)

Now the equation for W" can be derived from (95), (130), and 
(132). Solving this equation we get

WÖ = 6 ((8 5 + 2 52) Hq2 + (8 + 5 + 8 5 + 4 5 5) H' | 

-1+5 + 2 <52)/175 — 3 bHÖ/1.

Then Bo can be found :

B' = — 3 ((8 b + 2 52) Hi2 + (8 + b + 8 Ô + 4 Ô b) H'o

— 1+5 + 2 52)/l 75 — 2 bHo/l.

| (134)

3*
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Inserting (119) into (133) we gel

Wq = 3 ((56 b + 19 b2 — 25 /?</) Ho2

+ (16 + 52 b + 16 b — 25 a b +

23 <5 b) H' — 2 + 2 d + 4 h2)/l 75.

( 135 rad. eq.)

Th ird di/feren t iation.
The general procedure for deriving the derivatives having 

been made clear during the two first differentiations, we need 
only give the principal results of the third differentiation.

S'' = Ho (— 10 + 7 -y — 3 h)/l4 + [H'o2 (484 + 216 b — 280 + 

12 b2) + H'o (398 — 57 5 + 21 6 Ô + 105 g — 280 a + 24 ô b) 

— 210 — 57 ô + 105 a + 12 b2]/350.

(136)

H"’ = 3 [Hé3 (350 g2 + 1 20 b2 — 390 g b — 1370 g + 822 b + 1332) 

+ Ho2 (525 a g — 285 ba — 315 g b + 195 b b — 1 090 a — 945 g + 

513 b + 702 b + 2018)

+ Ho (175 a2 + 75 ô2 — 210 a h — 595 a + 363 5 + 490)] /700.

(137)

p" =  6 HÖ/1 + 3 (348 H'o2 — 196 H'o + 23)/700. (138)

L’"' = h"73 + 2(1-2H;)H"/7 j 
+ 4 (12  20 + 9 H'„ — 1)/175. |

u’’’ = [Il'o3 (350 g2 + 120 b2 — 390 g b — 1 770 g + 1062 b + 

2164) + Hq2 (525 a g — 285 ha — 315 g b + 195 <5 5 — 745 g — 

1490 a + 393 b + 942 b + 2178) + Ho(175 a2 + 75 <52- 

210 a b — 395 a + 243 b + 234) — 16]/700 .

( 140 rad. eq.)

A” = 3 H'o (— 5 — h )/1 4 + 3 [ H('2 (8 b2 + 144 b + 484) + 

Hq (16 ô 5 + 144 Ô — 38 b — 234) + 8 b2 — 38 b + 23J/700.
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WÔ" = — bH'ô’13 + 2 Hé' [ H'o (13 b + 3 52) + 3 Ô h + 5 5 4- 5]/35 

+ 2 [Ho3 (2 h3 — 24 b2 — 146 b) + H'o2 (6 ô b2 + 15 b2 — 48ôb 

+ eg b — 146 ô — 146) + H'o (6 ô2 b + 30 ôb+3b— 24 ô2
(142)

69 ô + 93) + 2 ô3 + 15 ô2 + 3 Ô — 1 ()]/875 .

Wo" = [Hj3 (— 1750 bg2 — 944 b3 + 2550 b2g + 9450 bg

— 6822 b2 — 11988 5) + H'q2 (— 2625 b oc g 4- 2175 bg ô

4- 2025 b2 oc — 1647 ô b2 4- 8050 oc b 4-4725 bg — 3645 b2 — 

7014 bô + 1000 <j 4-1000 <76 —15338 b — 2768 ô — 2768) +

Hq (— 875 b oc2 — 687 b ô2 4- 1650 oc ô b 4- 2975 b oc — 2775 <5 b

+ 1000 a 5 — 792 b2 — 2426 b —2048 <5 + 1000 a — 1256)

+ 16 63 4- 120 ô2 + 24<5 —80J/3500.

( 143 rad. eq.)

Summary of the equations.

The definitions which will be needed when using the equations 
of the present appendix are given in eq. (2), (3), (86), and (91). 
The general form of the results is described in section 2.3.

The developments are arranged so as to be equally useful 
for convective and radiative equilibrium. The particular formulae 
to be used in the two cases are the following:

Function Convective equilibrium Radiative equilibrium
h'o H'o = 0.4 Ho is the fundamental

parameter
U'o 1eq. (106) eq. (106)
w’o (112) (112)
H'ô H'ô = 0 (119)
U'ô (126) (126) or (128)
Wo (133) (133) or (135)
Ho H"'11 0 = 0 (137)
rf"uo (139) (139) or (140)
w;" (142) (142) or (143)
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Appendix 2.

The run of the physical variables through 1 1 stellar models.

Model 1.
x = '/.no T~3-5.

Variations

V U W H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 — oo 0.000 0.000 — oo — oc
0.5 2.808 2.253 0.172 9.007 9.891 9.962 8.621 9.431
1.0 2.616 1.640 0.330 9.160 9.780 9.924 9.037 9.733
1.5 2.424 1.155 0.474 9.251 9.668 9.888 9.268 9.861
2.0 2.234 0.784 0.607 9.318 9.552 9.852 9.424 9.926
2.5 2.045 0.512 0.731 9.372 9.432 9.816 9.539 9.960
3.0 1.860 0.320 0.848 9.407 9.307 9.780 9.628 9.979
3.5 1.678 0.193 0.960 9.457 9.177 9.744 9.698 9.989
4.0 1.502 0.111 1.068 9.493 9.042 9.707 9.756 9.995
4.5 1.334 0.061 1.175 9.526 8.901 9.670 9.803 9.998
5.0 1.175 0.031 1.281 9.557 8.754 9.632 9.842 9.999
5.5 1.027 0.015 1.386 9.586 8.603 9.594 9.874 0.000
6.0 0.891 0.007 1.492 9.613 8.447 9.554 9.900 0.000
6.5 0.767 0.003 1.599 9.638 8.289 9.515 9.920 0.000
7.0 0.658 0.001 1.706 9.662 8.130 9.476 9.937 0.000
7.5 0.562 0.001 1.815 9.684 7.972 9.438 9.951 0.000
8.0 0.478 0.000 1.925 9.704 7.815 9.400 9.961 0.000
8.5 0.408 0.000 2.037 9.722 7.663 9.364 9.969 0.000
9.0 0.347 0.000 2.149 9.739 7.515 9.328 9.976 0.000
9.5 0.297 0.000 2.262 9.755 7.373 9.29 1 9.981 0.000

10.0 0.254 0.000 2.376 9.769 7.237 9.262 9.984 0.000
10.5 0.219 0.000 2.490 9.781 7.107 9.231 9.987 0.000
11.0 0.189 0.000 2.604 9.793 6.983 9.201 9.990 0.000
11.5 0.164 0.000 2.719 9.804 6.864 9.173 9.992 0.000
12.0 0.143 0.000 2.834 9.813 6.752 9.147 9.993 0.000
12.5 0.125 0.000 2.949 9.822 6.645 9.122 9.994 0.000
13.0 0.110 0.000 3.063 9.830 6.543 9.097 9.995 0.000
13.5 0.098 0.000 3.176 9.837 6.445 9.074 9.996 0.000
14.0 0.086 0.000 3.288 9.844 6.352 9.052 9.997 0.000
14.5 0.077 0.000 3.398 9.850 6.262 9.032 9.997 0.000
15.0 0.068 0.000 3.504 9.856 6.176 9.011 9.998 0.000

V A U d w d H
3 + 111 13 + 342
6 39 1 229

10 27 0 519
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Model 2.

X = Xo @0-75 y—3-5

V U W H log r/jR log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 — oc 0.000 0.000 — 00 — oo
0.5 2.800 2.263 0.160 8.876 9.891 9.964 8.591 9.414
1.0 2.600 1.652 0.306 9.032 9.778 9.929 9.012 9.722
1.5 2.399 1.164 0.438 9.126 9.662 9.894 9.247 9.855
2.0 2.199 0.787 0.559 9.195 9.542 9.860 9.407 9.922
2.5 2.000 0.509 0.671 9.251 9.415 9.825 9.526 9.959
3.0 1.803 0.313 0.776 9.300 9.282 9.790 9.619 9.979
3.5 1.609 0.183 0.875 9.344 9.140 9.754 9.693 9.989
4.0 1.420 0.101 0.971 9.384 8.989 9.716 9.754 9.995
4.5 1.238 0.052 1.064 9.422 8.827 9.678 9.805 9.998
5.0 1.066 0.024 1.157 9.458 8.655 9.637 9.847 9.999
5.5 0.904 0.010 1.249 9.493 8.472 9.595 9.881 0.000
6.0 0.757 0.004 1.342 9.527 8.279 9.552 9.909 0.000
6.5 0.625 0.002 1.436 9.559 8.078 9.507 9.931 0.000
7.0 0.510 0.000 1.532 9.590 7.871 9.462 9.948 0.000
7.5 0.413 0.000 1.629 9.618 7.662 9.416 9.962 0.000
8.0 0.333 0.000 1.727 9.645 7.456 9.371 9.972 0.000
8.5 0.268 0.000 1.827 9.670 7.254 9.328 9.979 0.000
9.0 0.216 0.000 1.929 9.692 7.060 9.286 9.984 0.000
9.5 0.175 0.000 2.031 9.712 6.875 9.246 9.988 0.000

10.0 0.143 0.000 2.134 9.730 6.700 9.209 9.991 0.000
10.5 0.117 0.000 2.238 9.746 6.535 9.174 9.993 0.000
11.0 0.097 0.000 2.342 9.760 6.380 9.141 9.995 0.000
11.5 0.081 0.000 2.446 9.773 6.233 9.110 9.996 0.000
12.0 0.068 0.000 2.551 9.785 6.095 9.080 9.997 0.000
12.5 0.057 0.000 2.655 9.796 5.965 9.052 9.997 0.000
13.0 0.049 0.000 2.760 9.805 5.841 9.026 9.998 0.000
13.5 0.042 0.000 2.864 9.814 5.724 9.001 9.998 0.000
14.0 0.036 0.000 2.968 9.822 5.614 8.978 9.999 0.000
14.5 0.031 0.000 3.070 9.830 5.508 8.955 9.999 0.000
15.0 0.027 0.000 J 3.172 9.836 5.407 8.934 9.999 0.000

Variations

V A U A W zf H
3 + 32 + 4 + 93
6 61 1 298

10 32 0 737
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Model 3.

z = zoe0-5 T 3,5.

V U IV H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 --- 00 0.000 0.000 --- 00 —- OC
0.5 2.792 2.275 0.146 8.647 9.890 9.967 8.553 9.394
1.0 2.582 1.668 0.279 8.805 9.776 9.934 8.979 9.709
1.5 2.372 1.176 0.399 8.901 9.656 9.902 9.219 9.847
2.0 2.161 0.792 0.508 8.974 9.530 9.869 9.384 9.918
2.5 1.950 0.506 0.607 9.034 9.396 9.835 9.508 9.957
3.0 1.739 0.304 0.698 9.087 9.250 9.801 9.605 9.978
3.5 1.530 0.170 0.784 9.135 9.092 9.765 9.685 9.990
4.0 1.325 0.087 0.866 9.182 8.919 9.726 9.751 9.995
4.5 1.124 0.040 0.945 9.227 8.727 9.686 9.806 9.998
5.0 0.932 0.016 1.023 9.272 8.512 9.641 9.853 9.999
5.5 0.751 0.005 1.101 9.318 8.271 9.592 9.891 0.000
6.0 0.586 0.001 1.180 9.365 8.002 9.539 9.922 0.000
6.5 0.442 0.000 1.260 9.412 7.705 9.481 9.947 0.000
7.0 0.322 0.000 1.342 9.460 7.386 9.419 9.965 0.000
7.5 0.230 0.000 1.427 9.505 7.056 9.356 9.977 0.000
8.0 0.162 0.000 1.515 9.547 6.730 9.294 9.985 0.000
8.5 0.115 0.000 1.604 9.585 6.418 9.235 9.990 0.000
9.0 0.082 0.000 1.695 9.618 6.128 9.180 9.994 0.000
9.5 0.060 0.000 1.787 9.647 5.860 9.130 9.996 0.000

10.0 0.044 0.000 1.879 9.672 5.614 9.084 9.997 0.000
10.5 0.034 0.000 1.972 9.694 5.389 9.041 9.998 0.000
11.0 0.026 0.000 2.065 9.714 5.182 9.002 9.998 0.000
11.5 0.020 0.000 2.159 9.731 4.990 8.966 9.999 0.000
12.0 0.016 0.000 2.253 9.746 4.813 8.933 9.999 0.000
12.5 0.013 0.000 2.348 9.759 4.648 8.902 9.999 0.000
13.0 0.010 0.000 2.444 9.771 4.493 8.873 0.000 0.000
13.5 0.008 0.0OO 2.542 9.782 4.349 8.846 0.000 0.000
14.0 0.007 0.000 2.642 9.792 4.213 8.820 0.000 0.000
14.5 0.006 0.000 2.745 9.801 4.085 8.796 0.000 0.000
15.0 0.005 0.000 2.853 9.809 3.965 8.773 0.000 0.000

Variations

V A U A IV A II
3 + 132 + 19 + 340
6 37 0 150

10 1 0 55
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Model 4.

x = xoe0-75 T-2-5.

V U W II log rfR log P)PC log TjTc log.Wr,'M log LrJL

0.0 3.000 3.000 0.000 — oc 0.000 0.000 - oo ■—- oc
0.5 2.817 2.242 0.185 9.049 9.892 9.959 8.638 9.446
1.0 2.632 1.628 0.352 9.200 9.783 9.919 9.051 9.741
1.5 2.447 1.146 0.503 9.290 9.673 9.881 9.278 9.866
2.0 2.262 0.780 0.641 9.354 9.560 9.844 9.431 9.928
2.5 2.078 0.513 0.769 9.406 9.445 9.808 9.543 9.961
3.0 1.898 0.325 0.888 9.450 9.325 9.772 9.630 9.979
3.5 1.721 0.198 1.003 9.488 9.202 9.736 9.699 9.989
4.0 1.550 0.116 1.114 9.522 9.073 9.700 9.755 9.994
4.5 1.386 0.066 1.223 9.553 8.941 9.663 9.801 9.997
5.0 1.231 0.036 1.^30 9.582 8.804 9.626 9.839 9.999
5.5 1.085 0.019 1.437 9.609 8.663 9.589 9.870 9.999
6.0 0.951 0.010 1.545 9.634 8.519 9.552 9.895 0.000
6.5 0.828 0.005 1.654 9.657 8.373 9.514 9.916 0.000
7.0 0.718 0.002 1.763 9.679 8.226 9.477 9.933 0.000
7.5 0.621 0.001 1.874 9.699 8.080 9.441 9.946 0.000
8.0 0.536 0.001 1.986 9.718 7.936 9.405 9.957 0.000
8.5 0.462 0.000 2.099 9.735 7.795 9.370 9.966 0.000
9.0 0.399 0.000 2.213 9.750 7.658 9.336 9.972 0.000
9.5 0.345 0.000 2.328 9.765 7.526 9.304 9.978 0.000

10.0 0.299 0.000 2.444 9.778 7.399 9.272 9.982 0.000
10.5 0.260 0.000 2.560 9.790 7.277 9.243 9.985 0.000
11.0 0.227 0.000 2.677 9.800 7.160 9.214 9.988 0.000
11.5 0.199 0.000 2.795 9.810 7.049 9.187 9.990 0.000
12.0 0.175 0.000 2.912 9.819 6.942 9.161 9.992 0.000
12.5 0.154 0.000 3.030 9.828 6.841 9.136 9.993 0.000
13.0 0.137 0.000 3.148 9.835 6.744 9.113 9.994 0.000
13.5 0.122 0.000 3.265 9.842 6.651 9.090 9.995 0.000
14.0 0.108 0.000 3.381 9.849 6.562 9.069 9.996 0.000
14.5 0.097 0.000 3.497 9.855 6.476 9.048 9.996 0.000
15.0 0.087 0.000 3.610 9.860 6.394 9.019 9.997 0.000

Variations

V A U J W A H
3 + 91 + 9 + 260
6 18 0 83

10 23 0 301
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Model 5.

x = xo @°-5 T—2 5.

V U W II log r/7? log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 — oo 0.000 0.000 — oo — oc
0.5 2.808 2.254 0.171 8.911 9.891 9.962 8.605 9.426
1.0 2.613 1.643 0.323 9.065 9.780 9.925 9.023 9.729
1.5 2.418 1.158 0.460 9.157 9.667 9.889 9.255 9.858
2.0 2.222 0.785 0.584 9.225 9.549 9.854 9.413 9.924
2.5 2.026 0.511 0.698 9.280 9.426 9.818 9.530 9.960
3.0 1.833 0.317 0.803 9.327 9.297 9.783 9.620 9.979
3.5 1.642 0.188 0.903 9.369 9.160 9.747 9.694 9.989
4.0 1.456 0.105 0.999 9.407 9.016 9.710 9.753 9.995
4.5 1.277 0.055 1.092 9.444 8.862 9.672 9.803 9.998
5.0 1.106 0.026 1.184 9.478 8.698 9.633 9.844 9.999
5.5 0.946 0.012 1.276 9.511 8.525 9.593 9.878 0.000
6.0 0.799 0.005 1.368 9.542 8.344 9.551 9.905 0.000
6.5 0.667 0.002 1.462 9.573 8.154 9.508 9.928 0.000
7.0 0.550 0.001 1.557 9.602 7.960 9.464 9.945 0.000
7.5 0.451 0.000 1.654 9.629 7.763 9.421 9.959 0.000
8.0 0.368 0.000 1.752 9.654 7.568 9.378 9.969 0.000
8.5 0.299 0.000 1.852 9.677 7.376 9.336 9.977 0.000
9.0 0.244 0.000 1.953 9.698 7.191 9.296 9.982 0.000
9.5 0.199 0.000 2.056 9.717 7.014 9.257 9.987 0.000

10.0 0.164 0.000 2.160 9.735 6.845 9.221 9.990 0.000
10.5 0.136 0.000 2.264 9.750 6.686 9.186 9.992 0.000
11.0 0.113 0.000 2.369 9.764 6.535 9.154 9.994 0.000
11.5 0.095 0.000 2.474 9.777 6.393 9.123 9.995 0.000
12.0 0.080 0.000 2.580 9.788 6.258 9.094 9.996 0.000
12.5 0.068 0.000 2.687 9.799 6.131 9.067 9.997 0.000
13.0 0.058 0.000 2.793 9.808 6.010 9.041 9.997 0.000
13.5 0.050 0.000 2.900 9.817 5.896 9.016 9.998 0.000
14.0 0.043 0.000 3.008 9.825 5.788 8.993 9.998 0.000
14.5 0.038 0.000 3.116 9.832 5.684 8.971 9.999 0.000
15.0 0.033 0.000 3.225 9.839 5.586 8.950 9.999 0.000

Variations

V Zf u A VV A II
3 + 50 + 6 + 126
6 30 0 115

10 22 0 383
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Model 6.
X = Zop0-25 T-2-5.

43

V / W H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 oc 0.000 0.000 — X — X

0.5 2.797 2.268 0.154 8.647 9.891 9.965 8.562 9.403
1.0 2.592 1.660 0.292 8.804 9.778 9.931 8.986 9.714
1.5 2.385 1.170 0.414 8.899 9.660 9.898 9.224 9.850
2.0 2.176 0.790 0.523 8.970 9.536 9.864 9.387 9.920
2.5 1.967 0.507 0.621 9.029 9.404 9.830 9.509 9.958
3.0 1.758 0.307 0.711 9.081 9.262 9.796 9.605 9.978
3.5 1.550 0.173 0.795 9.129 9.107 9.760 9.684 9.990
4.0 1.345 0.090 0.874 9.174 8.938 9.722 9.749 9.995
4.5 1.144 0.042 0.950 9.218 8.750 9.682 9.804 9.998
5.0 0.951 0.017 1.025 9.262 8.539 9.638 9.851 9.999
5.5 0.768 0.006 1.099 9.307 8.303 9.590 9.889 0.000
6.0 0.600 0.002 1.174 9.354 8.038 9.538 9.921 0.000
6.5 0.452 0.000 1.251 9.401 7.743 9.481 9.946 0.000
7.0 0.329 0.000 1.331 9.448 7.423 9.419 9.964 0.000
7.5 0.233 0.000 1.413 9.494 7.090 9.356 9.977 0.000
8.0 0.163 0.000 1.498 9.537 6.757 9.294 9.985 0.000
8.5 0.114 0.000 1.586 9.576 6.437 9.234 9.991 0.000
9.0 0.081 0.000 1.675 9.610 6.138 9.178 9.994 0.000
9.5 0.058 0.000 1.765 9.640 5.863 9.127 9.996 0.000

10.0 0.043 0.000 1.856 9.666 5.610 9.080 9.997 0.000
10.5 0.032 0.000 1.948 9.688 5.379 9.037 9.998 0.000
11.0 0.024 0.000 2.040 9.708 5.166 8.998 9.999 0.000
11.5 0.019 0.000 2.132 9.726 4.970 8.961 9.999 0.000
12.0 0.015 0.000 2.224 9.741 4.788 8.927 9.999 0.000
12.5 0.012 0.000 2.316 9.755 4.619 8.896 0.000 0.000
13.0 0.010 0.000 2.409 9.767 4.461 8.866 0.000 0.000
13.5 0.008 0.000 2.502 9.778 4.312 8.839 0.000 0.000
14.0 0.006 0.000 2.594 9.789 4.173 8.813 0.000 0.000
14.5 0.005 0.000 2.687 9.798 4.041 8.789 0.000 0.000
15.0 0.004 0.000 2.780 9.806 3.916 8.766 0.000 0.000

Variations

V d U d w d II
3 + 78 + 12 + 178
6 19 0 66

10 11 0 282
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Model 7.

x = Xopo.5 7-0.9.

V U ir H log r/B log P/Pc log TjTc logMr/M log Lr!L

0.0 3.000 3.000 0.000 — oc 0.000 0.000 —- oo — oc
0.5 2.824 2.231 0.200 9.191 9.892 9.957 8.686 9.475
1.0 2.655 1.608 0.400 9.338 9.786 9.914 9.093 9.762
1.5 2.494 1.126 0.600 9.423 9.681 9.872 9.312 9.879

2.0 2.338 0.769 0.769 9.483 9.578 9.832 9.455 9.935
2.5 2.180 0.514 0.918 9.529 9.475 9.793 9.560 9.964
3.0 2.022 0.336 1.057 9.567 9.371 9.755 9.639 9.980
3.5 1.867 0.215 1.190 9.599 9.266 9.719 9.702 9.989
4.0 1.717 0.135 1.318 9.627 9.160 9.684 9.753 9.994
4.5 1.573 0.083 1.444 9.652 9.052 9.649 9.795 9.997
5.0 1.435 0.050 1.569 9.675 8.944 9.614 9.829 9.998
5.5 1.306 0.030 1.693 9.696 8.836 9.580 9.857 9.999
6.0 1.185 0.018 1.818 9.715 8.727 9.547 9.881 0.000
6.5 1.073 0.010 1.943 9.732 8.619 9.515 9.900 0.000
7.0 0.970 0.006 2.068 9.748 8.512 9.483 9.916 0.000
7.5 0.876 0.004 2.195 9.763 8.406 9.452 9.930 0.000
8.0 0.790 0.002 2.323 9.776 8.303 9.422 9.941 0.000
8.5 0.714 0.001 2.452 9.788 8.201 9.392 9.950 0.000
9.0 0.645 0.001 2.582 9.800 8.102 9.364 9.958 0.000
9.5 0.583 0.000 2.712 9.810 8.006 9.336 9.964 0.000

10.0 0.528 0.000 2.843 9.820 7.913 9.310 9.970 0.000
10.5 0.479 0.000 2.975 9.828 7.823 9.284 9.974 0.000
11.0 0.435 0.000 3.107 9.836 7.736 9.260 9.978 0.000
11.5 0.396 0.000 3.239 9.844 7.652 9.236 9.981 0.000
12.0 0.361 0.000 3.372 9.851 7.572 9.213 9.983 0.000
12.5 0.330 0.000 3.504 9.857 7.494 9.191 9.986 0.000
13.0 0.302 0.000 3.636 9.863 7.418 9.170 9.988 0.000
13.5 0.277 0.000 3.767 9.868 7.346 9.150 9.989 0.000
14.0 0.255 0.000 3.897 9.873 7.276 9.130 9.990 0.000
14.5 0.234 0.000 4.026 9.878 7.208 9.112 9.992 0.000
15.0 0.216 0.000 4.153 9.883 7.142 9.093 9.993 0.000

Variations

V d u A ir A H
6 + 18 0 + 108
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Model 8.

x = xop0-25 r-°-9.

V U W H log r/R log P/Pc log T/Tc \oëMrIM log Lr/L

0.0 3.000 3.000 0.000 ---  OC 0.000 0.000 --- OO ---  QO
0.5 2.824 2.231 0.200 9.089 9.892 9.957 8.661 9.467

1.0 2.655 1.609 0.394 9.237 9.786 9.914 9.068 9.754
1.5 2.483 1.131 0.554 9.323 9.679 9.874 9.289 9.872
2.0 2.308 0.774 0.697 9.385 9.572 9.835 9.438 9.931
2.5 2.132 0.514 0.827 9.434 9.463 9.798 9.546 9.962
3.0 1.958 0.331 0.947 9.475 9.350 9.762 9.630 9.980
3.5 1.787 0.206 1.060 9.511 9.234 9.726 9.697 9.989
4.0 1.620 0.124 1.168 9.542 9.115 9.690 9.751 9.994
4.5 1.459 0.073 1.275 9.572 8.992 9.655 9.796 9.997
5.0 1.305 0.041 1.380 9.598 8.865 9.619 9.833 9.998
5.5 1.161 0.023 1.484 9.623 8.734 9.584 9.864 9.999
6.0 1.027 0.012 1.589 9.646 8.601 9.548 9.889 0.000
6.5 0.903 0.006 1.695 9.668 8.466 9.512 9.910 0.000
7.0 0.791 0.003 1.802 9.688 8.330 9.477 9.927 0.000
7.5 0.691 0.002 1.910 9.707 8.194 9.442 9.941 0.000
8.0 0.602 0.001 2.019 9.724 8.059 9.408 9.952 0.000
8.5 0.525 0.000 2.131 9.740 7.926 9.374 9.961 0.000
9.0 0.457 0.000 2.243 9.755 7.797 9.342 9.968 0.000
9.5 0.399 0.000 2.357 9.769 7.671 9.311 9.974 0.000

10.0 0.348 0.000 2.471 9.781 7.550 9.281 9.979 0.000
10.5 0.305 0.000 2.587 9.793 7.433 9.252 9.982 0.000
11.0 0.268 0.000 2.703 9.803 7.320 9.224 9.986 0.000
11.5 0.236 0.000 2.820 9.813 7.212 9.198 9.988 0.000
12.0 0.209 0.000 2.936 9.822 7.109 9.172 9.990 0.000
12.5 0.185 0.000 3.054 9.830 7.010 9.148 9.992 0.000
13.0 0.165 0.000 3.171 9.837 6.915 9.125 9.993 0.000
13.5 0.147 0.000 3.288 9.844 6.824 9.103 9.994 0.000
14.0 0.132 0.000 3.405 9.850 6.737 9.081 9.995 0.000
14.5 0.118 0.000 3.522 9.856 6.653 9.061 9.996 0.000
15.0 0.107 0.000 3.638 9.862 6.572 9.041 9.996 0.000

Variations

V A U A W A H
5 + 25 + 2 + 81

10 7 0 106
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Model 9.

x = x0 T-°-9.

V U W H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 ----  00 0.000 0.000 —• OC — x>
0.5 2.820 2.237 0.189 8.892 9.892 9.957 8.618 9.444
1.0 2.635 1.625 0.351 9.042 9.784 9.918 9.030 9.738
1.5 2.445 1.146 0.491 9.132 9.673 9.880 9.258 9.863
2.0 2.254 0.780 0.614 9.197 9.559 9.844 9.412 9.926
2.5 2.060 0.512 0.723 9.250 9.440 9.809 9.527 9.960
3.0 1.867 0.321 0.822 9.296 9.315 9.773 9.616 9.979
3.5 1.676 0.192 0.913 9.336 9.183 9.738 9.689 9.989
4.0 1.488 0.109 1.000 9.374 9.042 9.702 9.748 9.994
4.5 1.305 0.058 1.084 9.410 8.890 9.665 9.798 9.997
5.0 1.129 0.029 1.166 9.444 8.729 9.626 9.840 9.999
5.5 0.963 0.014 1.248 9.477 8.555 9.586 9.874 0.000
6.0 0.810 0.006 1.330 9.509 8.370 9.545 9.903 0.000
6.5 0.671 0.002 1.414 9.540 8.175 9.502 9.926 0.000
7.0 0.548 0.001 1.500 9.570 7.971 9.458 9.944 0.000
7.5 0.443 0.000 1.588 9.599 7.761 9.413 9.958 0.000
8.0 0.356 0.000 1.678 9.626 7.551 9.369 9.969 0.000
8.5 0.285 0.000 1.771 9.652 7.343 9.325 9.977 0.000
9.0 0.228 0.000 1.866 9.675 7.140 9.283 9.983 0.000
9.5 0.183 0.000 1.962 9.696 6.946 9.243 9.988 0.000

10.0 0.148 0.000 2.058 9.715 6.761 9.205 9.991 0.000
10.5 0.120 0.000 2.156 9.732 6.586 9.169 9.993 0.000
11.0 0.098 0.000 2.255 9.747 6.421 9.135 9.995 0.000
11.5 0.081 0.000 2.354 9.761 6.266 9.103 9.996 0.000
12.0 0.067 0.000 2.453 9.774 6.118 9.073 9.997 0.000
12.5 0.057 0.000 2.552 9.785 5.980 9.044 9.997 0.000
13.0 0.048 0.000 2.650 9.795 5.848 9.018 9.998 0.000
13.5 0.040 0.000 2.748 9.805 5.724 8.992 9.998 0.000
14.0 0.034 0.000 2.845 9.813 5.605 8.968 9.999 0.000
14.5 0.030 0.000 2.942 9.821 5.493 8.945 9.999 0.000
15.0 0.025 0.000 3.036 9.828 5.385 8.923 9.999 0.000

Variations

V d u Zl IV zl H
3 + 53 + 5 + 112
6 19 1 59
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Model 10.

V U W H log r/R log P/Pc log T/Tc log Mr/M log LrIL

0.0 3.000 3.000 0.000 — oc 0.000 0.000 — oc ■— oc
0.5 2.824 2.231 0.200 9.232 9.892 9.957 8.699 9.478
1.0 2.655 1.608 0.400 9.380 9.786 9.914 9.105 9.765
1.5 2.494 1.126 0.600 9.465 9.681 9.872 9.324 9.881
2.0 2.342 0.768 0.800 9.524 9.578 9.831 9.467 9.937
2.5 2.198 0.514 1.000 9.569 9.478 9.791 9.569 9.966

3.0 2.059 0.338 1.156 9.605 9.380 9.753 9.645 9.981
3.5 1.919 0.220 1.296 9.635 9.282 9.716 9.705 9.989
4.0 1.782 0.141 1.432 9.661 9.184 9.680 9.754 9.994
4.5 1.648 0.089 1.565 9.684 9.086 9.645 9.793 9.997
5.0 1.520 0.056 1.697 9.705 8.988 9.612 9.826 9.998
5.5 1.398 0.035 1.827 9.724 8.890 9.579 9.853 9.999
6.0 1.284 0.022 1.958 9.740 8.793 9.547 9.876 0.000
6.5 1.176 0.013 2.090 9.756 8.697 9.515 9.895 0.000
7.0 1.077 0.008 2.222 9.770 8.602 9.485 9.910 0.000
7.5 0.985 0.005 2.354 9.783 8.508 9.455 9.924 0.000
8.0 0.901 0.003 2.487 9.795 8.416 9.427 9.935 0.000
8.5 0.824 0.002 2.621 9.806 8.326 9.399 9.944 0.000
9.0 0.754 0.001 2.756 9.816 8.239 9.372 9.952 0.000
9.5 0.691 0.001 2.890 9.825 8.154 9.346 9.959 0.000

10.0 0.633 0.000 3.026 9.833 8.071 9.321 9.964 0.000
10.5 0.581 0.000 3.162 9.841 7.990 9.296 9.969 0.000
11.0 0.534 0.000 3.297 9.848 7.912 9.273 9.973 0.000
11.5 0.491 0.000 3.432 9.855 7.837 9.250 9.977 0.000
12.0 0.452 0.000 3.567 9.861 7.764 9.228 9.980 0.000
12.5 0.418 0.000 3.700 9.867 7.693 9.207 9.892 0.000
13.0 0.386 0.000 3.832 9.872 7.625 9.187 9.984 0.000
13.5 0.357 0.000 3.962 9.877 7.558 9.168 9.986 0.000
14.0 0.330 0.000 4.091 9.882 7.494 9.149 9.988 0.000
14.5 0.307 0.000 4.216 9.886 7.431 9.131 9.989 0.000
15.0 0.285 0.000 4.339 9.891 7.371 9.113 9.990 0.000
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Model 11.

x = x0.

V U W II log rfR log P/Pc log 77 Tc logMr/M log Lr)L

0.0 3.000 3.000 0.000 ---- OC 0.000 0.000 — 00 —- cc
0.5 2.824 2.231 0.200 9.134 9.892 9.957 8.678 9.474
1.0 2.655 1.608 0.400 9.281 9.786 9.914 9.084 9.761
1.5 2. 19 1 1.126 0.600 9.366 9.681 9.872 9.303 9.878

2.0 2.336 0.770 0.759 9.426 9.577 9.832 9.417 9.934
2.5 2.174 0.514 0.894 9.472 9.473 9.793 9.552 9.964
3.0 2.010 0.336 1.018 9.511 9.367 9.756 9.633 9.980
3.5 1.847 0.213 1.133 9.544 9.259 9.720 9.698 9.989
4.0 1.687 0.132 1.244 9.574 9.148 9.685 9.750 9.994
4.5 1.532 0.080 1.351 9.601 9.034 9.650 9.793 9.997
5.0 1.384 0.047 1.457 9.625 8.918 9.616 9.829 9.998
5.5 1.243 0.027 1.563 9.648 8.798 9.581 9.859 9.999
6.0 1.111 0.015 1.669 9.669 8.677 9.547 9.884 0.000
6.5 0.989 0.008 1.775 9.689 8.555 9.514 9.904 0.000
7.0 0.877 0.005 1.883 9.707 8.432 9.480 9.921 0.000
7.5 0.776 0.003 1.992 9.724 8.308 9.447 9.935 0.000
8.0 0.685 0.002 2.103 9.740 8.186 9.415 9.947 0.000
8.5 0.604 0.001 2.216 9.754 8.066 9.383 9.956 0.000
9.0 0.533 0.000 2.330 9.768 7.948 9.353 9.964 0.000
9.5 0.470 0.000 2.445 9.780 7.833 9.323 9.970 0.000

10.0 0.416 0.000 2.561 9.792 7.722 9.294 9.975 0.000
10.5 0.368 0.000 2.678 9.802 7.614 9.267 9.979 0.000
11.0 0.327 0.000 2.797 9.812 7.509 9.240 9.983 0.000
11.5 0.291 0.000 2.916 9.821 7.409 9.215 9.985 0.000
12.0 0.259 0.000 3.035 9.829 7.313 9.190 9.988 0.000
12.5 0.232 0.000 3.155 9.836 7.220 9.167 9.990 0.000
13.0 0.208 0.000 3.275 9.844 7.131 9.144 9.991 0.000
13.5 0.187 0.000 3.396 9.850 7.045 9.123 9.992 0.000
14.0 0.169 0.000 3.516 9.856 6.963 9.102 9.993 0.000
14.5 0.153 0.000 3.636 9.862 6.883 9.082 9.994 0.000
15.0 0.139 0.000 3.757 9.867 6.807 9.063 9.995 0.000

v

5

Variations

d U A VV
4-14 +1

A II
+ 44
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